
October 2003 www.stsc.hill.af.mil 25

The computer science community has
introduced design patterns as a means

of capturing and documenting solutions
to common software problems [1, 2]. An
important aspect is the combination of
patterns. In “Design Patterns” [1], the
authors discuss how patterns dovetail and
intertwine in good software. Nevertheless,
combining patterns into a good overall
architecture has received less attention
than the individual patterns. In much of
the literature, each pattern is often pre-
sented separately along with a discussion
of how it fits into a resulting class dia-
gram. This assumes that the class diagram
exists when you present your patterns.

In this article, we present not only how
different patterns are used in software
architecture, but also how we evolved the
architecture by successively integrating
more patterns to deal with particular
design problems. We present the individ-
ual patterns, their interaction, and the
questions that arise when they are com-
bined.

The example we use is a software sub-
system of a new generation of surveil-
lance radar constructed by Ericsson
Microwave Systems (EMW) in Mölndal,
Sweden. This subsystem contains the
modules that handle tracking, communi-
cation with external devices, threat evalua-
tion, etc. A major problem with the soft-
ware of an earlier radar system was that
the modules were too interdependent. If
you wanted to use only one part for a new
product, you often had to include all mod-
ules even though the functionality was not
needed.

When the new architecture was con-
structed, one premise was to maximize
reuse. The main reason was the business
situation for the surveillance radar system.
The trend was that each customer bought
a small series but still required consider-
able tailoring to his or her needs. To
encourage reuse, the different compo-
nents had to be made more independent
and flexible. A function had to be coupled

to as few other components as possible,
and direct dependencies had to be elimi-
nated or minimized.

An important guideline in the architec-
tural design was the requirement for mod-
ifiability. The following sources of modifi-
cations were especially considered:
1. Replacement of hardware and operat-

ing system.
2. Different customers’ functional

requirements.

In the following, we first discuss how
the system was made adaptable to new
hardware and software, and then how it
was designed to accommodate changes in
customer requirements in general and
requirements for presentation and control
in particular.

Adaptability to New Hardware
and Operating System
To facilitate future changes of hardware
and operating system, a layered architec-
ture was introduced. The system was
structured in terms of components, which
were placed in three layers with applica-

tion-oriented components at the top and
hardware and operating system dependent
components at the bottom. This is a time-
honored architectural style with the Open
Systems Interconnection protocol stack as
a classic example [3].

The Layers Architectural Pattern
The Layers pattern is described in [2]. In it,
the system is structured as a number of
layers that represent different levels of
abstraction. We introduce the following
three layers from top to bottom:
• The application layer containing the

functionality required of the system.
• The support layer containing parts

shared by the applications. An impor-
tant role for this layer is to act as data
storage for the applications. For maxi-
mum independence between applica-
tions, their input and output data is
stored in the support layer. That way,
the applications need not be directly
aware of each other but instead
depend on the database components
in the support layer.

• The core layer containing components
that depend on the operating system
or the hardware.
A principle of the Layers pattern is

that the components in each layer only
know of and use components in lower lay-
ers. In our case, this means that the com-
ponents in the application layer only know
and use components in the support layer
(and possibly the core layer). This princi-
ple automatically makes the components
in the application layer independent, but
sometimes forces you to introduce addi-
tional layers, potentially complicating the
solution. For simplicity, it is sometimes
reasonable to compromise and let some
components in a layer know of each
other. Still, a component should never
need to know of a component in a higher
layer.

Architectural Components
The layered architecture is shown in

Software Architecture as a Combination of Patterns

Kent Petersson and Tobias Persson 
Ericsson Microwave Systems

Ericsson Microwave Systems in Sweden was confronted with the problem of constructing a radar system that could withstand
the replacement of hardware and operating system software and be adaptable to different customers’ functional requirements.
This was accomplished by means of software architecture with highly independent and flexible components that is a combi-
nation of four design patterns: Layers, Pipes and Filters, Observer, and Model-View-Controller.

Dr. Bo I. Sanden
Colorado Technical University

Software Engineering Technology

“A principle of the
Layers pattern is that the

components in each
layer only know of and

use components in lower
layers ... the components
in the application layer

only know and use 
components in the 
support layer ...”



26 CROSSTALK The Journal of Defense Software Engineering October 2003

Figure 1. The following are some of the
components in the Core layer:
• System Time (Time). This component

allows the system to run at a user-
defined time in a simulation mode.
With multiple instances of this com-
ponent, real time and simulated time
can be used concurrently.

• Time Synchronization (TSync). With
different parts of the system running
on different hardware nodes, synchro-
nizing the system time on each node is
critical.

• Communication Protocols (Comm).
This component includes components
dealing with low-level communication
protocols tailored for specific applica-
tions.

• Built-in Test (BiT). These modules
handle hardware testing.

Adaptation to Customer
Requirements
Customers have differing functional
requirements for at least two reasons.
First, different customers need more or
less functionality depending on how they
intend to use the radar system in their
overall system structure. Some want a
basic system while others want a deluxe
version.

Second, customers must integrate the
system they buy into a larger system
whose interfaces vary considerably. This
has led to a lot of reconstruction of the
radar system over the years. The interface
to the human operators is particularly vari-
able.

To solve the problem with differing
customer requirements, we designed
architecture for a complete system with

full functionality. It defines how the entire
system would work even if EMW would
only realize parts of it. This architecture is
broken into subsystems that are suffi-
ciently independent to allow for all rea-
sonable variations. Designing a system
that includes all possible variants is not a
design pattern but a widely applicable
design principle.

The Data Flow Principle
The decomposition into subsystems was
done according to the Data Flow
Principle. In this common architectural
style, you study how data flows through
the system and divide it into subsystems
at suitable points in the data flow. For
example, radar can be divided into a

transmitter, antenna, receiver, signal
processor, data processor, or presenta-
tion, reflecting the path of a radar pulse
through the system. Radar data process-
ing has traditionally been structured along
the same lines. One common structure is
as follows: target tracking, data fusion,
threat evaluation, and engagement plan-
ning. Most of those involved know and
understand this structure.

The Design Pattern: Pipes and Filters
The pattern that supports data flow is Pipes
and Filters [2]. It is intended to solve the
problem of structuring a big system that
transforms a stream of data. Designing
such a system as a single component is
unwise and makes the system inflexible
and vulnerable to future changes. For this
reason, the system is divided according to
how data flows as shown in Figure 2. We
primarily use this pattern to structure the
application layer, but it also has implica-
tions for the support layer.

Composition of Layers and Pipes
and Filters
The problem is how to fit both the Layers
pattern and the Pipes and Filters pattern
into the architecture. The Layers pattern
structures the system vertically while
Pipes and Filters structure it horizontally.
We had to find an architecture that retains
the desirable features of each pattern.
Using Pipes and Filters directly on the
application would make those application
components that represent the filters
aware of each other. This defeats one of
the goals of the Layers pattern, namely
application independence.

The solution was to put data storage
components that work as buffers between
the different applications – that is, the
pipes in the Pipes and Filters pattern – in
the support layer. Figure 3 shows the
architecture with the Layers and Pipes
and Filters patterns combined. This solu-
tion radically reduces the coupling
between applications. By also making the
components independent in terms of
synchronization, we minimize the cou-
pling between the components that pro-
duce and consume data. It is the case that
a real-time system sometimes produces
data faster than it can consume it, and a
direct coupling between producer and
consumer may then lead to the use of
stale data. It is often better to discard the
old data and continue with the relevant
information.

With a separate data storage compo-
nent we can isolate the problem and store
valid data only without involving the pro-
ducer or consumer. The producer pro-

Application Layer

Support Layer

Core Layer

Time TSync BiTComm

Figure 1: Layered Architecture With Some of the Core Layer Components 

Tracking Data Fusion
Threat

Evaluation
Engagement

Planning
Data FlowData FlowData Flow

Note: Arrows indicate the data flow between components.

Figure 2: The Pipe and Filters Pattern

Software Engineering Technology

“The flexible and 
independent structure 

of the architecture
was very useful when
combining components
to meet the customers’

different needs and
resulted in reduced cost
as well as faster delivery

of the projects.”



Software Architecture as a Combination of Patterns

October 2003 www.stsc.hill.af.mil 27

duces data at one rate, and the consumer
consumes it at a different rate. The data
storage components ensure that the most
current data are used.

Event Handling
The simple model with the components in
the application layer decoupled by means
of data storage components in the sup-
port layer works for data that are pro-
duced and consumed continuously. Other
data, which may be associated with differ-
ent events or operator controls, do not fit
in this model. This is because changes
occur rarely, but the application must react
very quickly to them. In a data flow solu-
tion, an application that is dependent on a
certain control would have to query the
data storage component for its status quite
often. Most of the time, the control would
be unchanged. This is inefficient, but on
the other hand, allowing the data storage
component or some other application to
send the information directly to another
component in the application layer would
create a strong dependence between com-
ponents.

The solution is to introduce an event
handling mechanism. Applications sub-
scribe to an event by calling an event han-
dler. When another application generates
an event, which may carry with it other
(changed) information, the subscribers are
informed of the occurrence and can re-
trieve the additional information from the
data storage components.

This kind of event handling reduces
the coupling between the event-generating
component and the subscribers; they need
not be aware of each other. The approach
is quite resilient to system changes. The
event-handling mechanism works even if
a certain subscriber is absent in a given
variant of the system. Not even the event
generator has to be present in all system
variants, which will then lack certain func-
tionality. A drawback is that event han-
dling is an unstructured and dynamic way
of information exchange comparable to
exception handling and should be used
restrictively.

The Design Pattern Observer
A design pattern that captures the idea
behind the event handling described earli-
er is called Observer [1]. It is also referred to
as Publish/Subscribe [2] and is used to syn-
chronize the state of cooperating compo-
nents. The component that detects the
state of change publishes a message that is
then forwarded to any number of sub-
scribers.

The pattern solves the problem where
many different components must be

informed of a relatively rare event in a
flexible way. The salient feature of
Observer is the reduced coupling between
the publisher and the subscribers.

Presentation and Control
Presentation and control are particularly
susceptible to rework due to different cus-
tomer requirements. Changes are difficult
to predict because the requirements for
presentation and control tend to be unique
to each customer. The structuring of the
user interface is often fundamental to the
architecture of any application of which it
is a part. There are two possibilities:
1. Separating presentation and function-

ality with the rationale that the presen-
tation represents one cohesive unit,
and functionality another. That is, cer-
tain functionality is considered more

closely coupled to another functionali-
ty than to its own presentation. The
Model-View-Controller (MVC) pattern
captures this approach [2].

2. Tying functionality more closely to its
presentation than to another function-
ality. A pattern that captures this view
is Presentation-Abstraction-Control [2].
In our application, the concrete pres-

entation and control are collected in one
component: Operator Presentation and
Control (OPC). This component is the
entire program’s interface to the human
user. Changes concerning the concrete
presentation and control are localized in
one component according to MVC [2].

The Design Pattern MVC
The MVC pattern divides the world into a
model, a presentation part, and a control

Application Layer

Support Layer

Core Layer

Time TSync BiTComm

Plot Data
Local Tracks

Data
Threat Data

Systems Tracks
Data

Engagement
Data

Tracking
Threat

Evaluation

External
Tracks Data

Data Fusion
Engagement

Planning

Data Stores

Data
Flows

Note: Data storage components have been added in the support layer.

Figure 3: Combining the Layers Pattern with Pipes and Filters 

Application Layer

Support Layer

Core Layer

Plot Data
Local Tracks

Data
Threat Data

Systems Tracks
Data

Engagement
Data

Tracking
Threat

Evaluation

External
Tracks Data

Data Fusion
Engagement

Planning

Data Stores

Model

Operator
Presentation
and Control

Comm/
Distribution

Control/View

Figure 4: The Architecture After Applying the MVC Pattern



part. For compatibility with our own
earlier designs, we used a variant, also
described in [2], where the presentation
and control parts are combined, while
the model remains separate and con-
sists of all the data storage components
in the support layer.

The problem that MVC intends to
solve is that user interfaces are especial-
ly vulnerable to change requests, and
lead to many program modifications. A
change to the presentation of one part
of the system often forces a change to
another part’s presentation. It is hard to
build a presentation with the required
flexibility. Instead one can accept the
situation and just structure the system
so that all parts that handle the presen-
tation are separated from the model.

Combining MVC With the Earlier
Patterns
In the final architecture, MVC must
obviously be combined with the earlier
patterns. Figure 4 (see page 27) shows
how it fits. The control/view part con-
sists of two components: OPC for the
actual presentation and Communi-
cation/Distribution for the distribution
of data to external systems. The MVC
pattern supports the idea that external
communication is just another form of
presentation. This means that external
communication, which also tends to
vary drastically between projects, can be
handled in the same way as presenta-

tion. Figure 4 shows how the compo-
nents for presentation and external dis-
tribution are incorporated into the
architecture. The data that are present-
ed and distributed are in the data sup-
port layer, which is in accordance with
MVC.

Conclusion
The resulting architecture shows that
the four patterns, Layers, Pipes and
Filters, Observer, and Model-View-
Controller, can be combined quite ele-
gantly in radar software. We have also
shown that it is possible and beneficial
to use design patterns in a large and
very complex application. The same
overall architecture has been used in
seven different projects with quite dif-
ferent functionality in the human-
machine interface, external communica-
tion, and command-and-control parts.
In five of these projects, the design and
implementation of the software is now
completed. The flexible and independ-
ent structure of the architecture was
very useful when combining compo-
nents to meet the customers’ different
needs, and resulted in reduced cost as
well as faster delivery of the projects.

We believe that you can expect to
continuously improve and refactor the
software architecture during its entire
lifetime. For example, the OPC needs
to send commands and controls to the
application components in a more effi-

cient way. Another example is the inner
structure of the OPC component.
Finally, it may be desirable to split the
view and the controller of the MVC
pattern into separate components.

In this article, we have only
described a logical view of the compo-
nents and ignored the mapping to phys-
ical processes and machines. Further
work has been initiated to see how
components can be structured and
delivered as distributed applications
that can execute on different nodes in a
network.◆

Acknowledgment 
The patterns work was partially sup-
ported by the Swedish Defense Materiel
Administration, Försvarets Materielverk
through the FOTA project.

References
1. Gamma, Erich, Richard Helm,

Ralph Johnson, and John Vlissides.
Design Patterns – Elements of
Reusable Object-Oriented Software.
Addison-Wesley, 1995.

2. Buschmann, Frank, Regine Meunier,
Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented
Software Architecture: A System of
Patterns. John Wiley, 1996.

3. Day, J. D., and H. Zimmermann.
The OSI Reference Model. Proc. of
the IEEE. Vol. 71, Dec. 1983: 1334-
1340.

28 CROSSTALK The Journal of Defense Software Engineering October 2003

About the Authors
Kent Petersson is cur-
rently working on soft-
ware architectures at
Ericsson Microwave
Systems in Mölndal,
Sweden. He has a back-

ground as associate professor at the
Department of Computer Science at
Chalmers University of Technology in
Gothenburg. His research interests
include program verification, type sys-
tems, and functional programming.
Petersson received his degree in mathe-
matics and computer science from the
University of Gothenburg, Sweden.

Ericsson Microwave Systems AB
Surveillance and Communication 
Systems
SE-43184 Mölndal
Sweden
E-mail: kent.petersson@

ericsson.com 

Bo I. Sanden, Ph.D.,
is professor of comput-
er science at Colorado
Technical University in
Colorado Springs. He
spent 15 years as a soft-

ware architect with UNIVAC and
Philips. His main research interest is
software design. Sanden has a Master
of Science in engineering physics from
the Lund Institute of Technology,
Lund, Sweden, and a doctorate in com-
puter science from the Royal Institute
of Technology, Stockholm.

Colorado Technical University
4435 North Chestnut St.
Colorado Springs, CO 80907-3896
Phone: (719) 531-9045
Fax: (719) 598-3740
E-mail: bsanden@acm.org 

Tobias Persson is manager of a soft-
ware design group for Ericsson
Microwave Systems and has worked at
the company as a software engineer in
radar projects. Persson has a Master of
Science in computer science from the
University of Gothenburg, Sweden.

Ericsson Microwave Systems AB
Surveillance and Communication 
Systems
SE-43184 Mölndal
Sweden
E-mail: tobias.persson@

ericsson.com

Software Engineering Technology


